Monday, March 24, 2014

Binary Tree in Java



import java.util.ArrayDeque;
import java.util.Deque;
import java.util.LinkedList;
import java.util.Queue;

public class BinaryTree {
private TreeNode root;

/** Inner class tree node */
private class TreeNode {
Object element;
TreeNode left;
TreeNode right;

public TreeNode(Object o) {
element = o;
}

}

/** Create a default binary tree */
public BinaryTree() {
}

/** Create a binary tree from an array of objects */
public BinaryTree(Object[] objects) {
for (int i = 0; i < objects.length; i++) {
insert(objects[i]);
}
}

/** Search element o in this binary tree */
public boolean search(Object o) {
return search(o, root);
}

public boolean search(Object o, TreeNode root) {
if (root == null) {
return false;
}
if (root.element.equals(o)) {
return true;
} else {
return search(o, root.left) || search(o, root.right);
}
}

/** Return the number of nodes in this binary tree */
public int size() {
return size(root);
}

public int size(TreeNode root) {
if (root == null) {
return 0;
} else {
return 1 + size(root.left) + size(root.right);
}
}

/**
* Return the depth of this binary tree. Depth is the number of the nodes in
* the longest path of the tree
*/
public int depth() {
return depth(root);
}

public int depth(TreeNode root) {
if (root == null) {
return 0;
} else {
return 1 + Math.max(depth(root.left), depth(root.right));
}
}

/**
* Insert element o into the binary tree Return true if the element is
* inserted successfully
*/
public boolean insert(Object o) {
if (root == null) {
root = new TreeNode(o); // Create a new root
} else {
// Locate the parent node
TreeNode parent = null;
TreeNode current = root;
while (current != null) {
if (((Comparable) o).compareTo(current.element) < 0) {
parent = current;
current = current.left;
} else if (((Comparable) o).compareTo(current.element) > 0) {
parent = current;
current = current.right;
} else {
return false; // Duplicate node not inserted
}
}

// Create the new node and attach it to the parent node
if (((Comparable) o).compareTo(parent.element) < 0) {
parent.left = new TreeNode(o);
} else {
parent.right = new TreeNode(o);
}
}

return true; // Element inserted
}

public void breadth() {
breadthFirst(root);
}

// Implement this method to produce a breadth first
// search traversal
public void breadthFirst(TreeNode root) {
if (root == null)
return;
Queue queue = new LinkedList();
queue.clear();
queue.add(root);
while (!queue.isEmpty()) {
TreeNode node = queue.remove();

System.out.print(node.element + " ");
if (node.left != null)
queue.add(node.left);
if (node.right != null)
queue.add(node.right);
}
}

public void depthFirst() {
depthFirst(root);
}

/**
* Depth first traversal.
*/
public void depthFirst(TreeNode root) {
if (root == null)
return;
Deque stack = new ArrayDeque();
stack.clear();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode node = stack.pop();

System.out.print(node.element + " ");
if (node.left != null)
stack.push(node.left);
if (node.right != null)
stack.push(node.right);
}
}

/** Inorder traversal */
public void inorder() {
inorder(root);
}

/** Inorder traversal from a subtree */
private void inorder(TreeNode root) {
if (root == null) {
return;
}
inorder(root.left);
System.out.print(root.element + " ");
inorder(root.right);
}

/** Postorder traversal */
public void postorder() {
postorder(root);
}

/** Postorder traversal from a subtree */
private void postorder(TreeNode root) {
if (root == null) {
return;
}
postorder(root.left);
postorder(root.right);
System.out.print(root.element + " ");
}

/** Preorder traversal */
public void preorder() {
preorder(root);
}

/** Preorder traversal from a subtree */
private void preorder(TreeNode root) {
if (root == null) {
return;
}
System.out.print(root.element + " ");
preorder(root.left);
preorder(root.right);

}

}

Test code:

import org.junit.Test;

public class BinaryTreeTest {

@Test
public void test() {
BinaryTree tree = new BinaryTree(new Integer[] {10, 5, 15, 12, 4, 8 });

   System.out.print("\nInorder: ");
   tree.inorder();
   System.out.print("\nPreorder: ");
   tree.preorder();
   System.out.print("\nPostorder: ");
   tree.postorder();

   //call the breadth method to test it

   System.out.print("\nBreadthFirst:");
   tree.breadth();
   System.out.print("\nDepthFirst:");
   tree.depthFirst();
}

}

No comments:

Popular micro services patterns

Here are some popular Microservice design patterns that a programmer should know: Service Registry  pattern provides a  central location  fo...